





# **Document Control Sheet**

| Client         | Ironside Farrar Environmental Consultants |
|----------------|-------------------------------------------|
| Project Title  | Former Roslin Institute, Midlothian DIA   |
| Document Title | Former Roslin Institute Midlothian DIA_R2 |
| Document No.   | R2                                        |

| Revision | Status | Author(s) | Review | Approval | Issue Date |
|----------|--------|-----------|--------|----------|------------|
| R1       | Issue  | ADB       | IMcL   |          | March 16   |
| R2       | Issue  | PL        | SJM    |          | October 16 |



# **Contents**

| 1. | •:  | Exe   | cutive   | Summary                                            | 5    |
|----|-----|-------|----------|----------------------------------------------------|------|
| 2. |     | Intro | ductio   | n                                                  | 6    |
|    | 2.  | 1     | Overv    | ew                                                 | 6    |
|    | 2.2 | 2     | Draina   | ge Area Study Background                           | 6    |
|    | 2.3 | 3     | Study    | Brief and Objectives                               | 8    |
|    | 2.4 | 4     | Inform   | ation Received                                     | 8    |
| 3. |     | Exis  | sting sy | stem                                               | . 10 |
|    | 3.  | 1     | Site D   | etails                                             | . 11 |
|    | 3.2 | 2     | Interm   | ittent Discharges Impacted by Proposed Development | . 11 |
|    | 3.3 | 3     | Existin  | g Model Update                                     | . 12 |
| 4. |     | Pro   | oosed I  | Development & developed system amendments          | . 13 |
|    |     |       |          | sed Land Usage                                     |      |
|    | 4.2 | 2     | Propos   | sed Connection Details                             | . 13 |
|    | 4.3 | 3     | Dry W    | eather Flow                                        | . 14 |
|    | 4.4 | 4     | Surfac   | e Water Runoff                                     | . 14 |
|    | 4.  | 5     | Future   | Misconnections & Infiltration                      | . 14 |
| 5. |     | Stag  | ge 1 As  | sessment – Existing / Developed Comparisons        | . 15 |
|    | 5.  | 1     | Hydra    | ulic Assessment                                    | . 15 |
|    | 5.  | 1.1   | Floo     | ding Assessment                                    | . 15 |
|    | 5.  | 1.2   | Sur      | charge levels                                      | . 16 |
|    | 5.2 | 2     | CSO A    | Assessment                                         | . 18 |
|    | 5.2 | 2.1   | CSC      | Spill Frequency and Volume Assessment              | . 18 |
|    | 5.2 | 2.2   | Forr     | nula "A" Assessment                                | . 19 |
|    | 5.3 | 3     | Lowes    | t Floor Level Assessment                           | . 20 |
| 6. |     | Con   | clusior  | s and Recommendations                              | . 21 |
|    | 6.  | 1     | Stage    | 1 Conclusion                                       | . 21 |
|    | 6.2 | 2     | Recon    | nmendations                                        | . 21 |
| A  | ppe | endi  | x 1      | Development Site Layout Model Parameters           | . 22 |
| A  | ppe | endi  | x 2      | Stage 1 Flow Volume Decrease Results               | . 23 |
| A  | ppe | endi  | x 3      | Formula 'A' Results                                | . 32 |
|    |     |       |          |                                                    |      |



# **Tables**

| Table 1: Downstream Critical CSOs in Existing System                                 | 11     |
|--------------------------------------------------------------------------------------|--------|
| Table 2: Connection Points and Estimated Discharge Rates from Phase of developme     | nt 13  |
| Table 3: Flow Volume Comparison downstream the Proposed Development                  | 16     |
| Table 4: Predicted change in freeboard at manholes downstream the proposed developed | opment |
|                                                                                      | 17     |
| Table 5: CSO Spill Frequency                                                         | 18     |
| Table 6: CSO Overall Spill Volumes Comparison                                        | 19     |
| Table 7: Formula "A" Assessment                                                      | 19     |
| Table 8 – Freeboard at connection manholes                                           | 20     |
|                                                                                      |        |
| Ciarra a                                                                             |        |
| Figures                                                                              |        |
| Figure 1 – Overview of the Edinburgh WWTW Model and Development Location             | 7      |
| Figure 2: Proposed development location and key downstream assets to Edinburgh       | WwTW   |
|                                                                                      | 10     |
| Figure 3: Model at Former Roslin Institute Development Site                          | 12     |
| Figure 4: Location of Manholes downstream the proposed development with Inc          | reased |
| Surcharge Levels (Freeboard >0.5m)                                                   | 17     |



# 1. Executive Summary

| Development                            | Former Roslin Institut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e, Midlothian DIA                                                                                                                                                                             | Developers                                 | Ironside Farrar                  |  |  |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|--|--|--|--|
|                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | New development of 300 residential units.                                                                                                                                                     |                                            |                                  |  |  |  |  |
|                                        | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approximately 11.9Ha in total                                                                                                                                                                 |                                            |                                  |  |  |  |  |
| Development                            | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Roslin Village, 7km south of Ed                                                                                                                                                               | dinburgh City Centre                       |                                  |  |  |  |  |
| Summary                                | Previous/ Current<br>Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Former Roslin Institution, Brow                                                                                                                                                               | Former Roslin Institution, Brownfield site |                                  |  |  |  |  |
|                                        | Proposed<br>Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Into Manhole 26639702 locate                                                                                                                                                                  | d to the south west of the                 | he development site              |  |  |  |  |
| Model Utilised                         | STW001986_ICS_JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NE2016_TSR                                                                                                                                                                                    |                                            |                                  |  |  |  |  |
| Model Parameters                       | Phase 1 – 200 houses and demolition of Logan building and Poultry centre: – Foul flow = 0.95 l/s. Creep Allowance added to base flow = 0.095 l/s. Total Area = 7.63 Ha. Contributing Area = 0.08 Ha. Connection Manhole is NT27630701 (on sewer to south west of development).  Phase 2 – 300 houses (additional 100 houses and demolition of Wallace building):– Foul flow = 1.43 l/s. Creep Allowance added to base flow = 0.143 l/s. Total Area = 11.9 Ha. Contributing Area = 0.2 Ha. Connection Manhole is NT26639702 (on sewer to south west of development). |                                                                                                                                                                                               |                                            |                                  |  |  |  |  |
| Simulation<br>Settings                 | Time steps set at 20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | seconds and results for 5 minutes                                                                                                                                                             | for both design storm                      | simulations and TSR simulations. |  |  |  |  |
|                                        | Flooding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                                                                                                                                                                          |                                            |                                  |  |  |  |  |
|                                        | Surcharge Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PASS                                                                                                                                                                                          |                                            |                                  |  |  |  |  |
|                                        | CSO Activations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PASS                                                                                                                                                                                          |                                            |                                  |  |  |  |  |
| Stage 1 –<br>Performance<br>Assessment | Formula "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FAIL IN BOTH PRE AND POST DEVELOPMENT SCENARIOS  All CSOs with an exception of Killburn WWPS overflow are predicted to fail in both the pre-development model and the post-development model. |                                            |                                  |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PASS                                                                                                                                                                                          |                                            |                                  |  |  |  |  |
|                                        | Lowest level Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PASS                                                                                                                                                                                          |                                            |                                  |  |  |  |  |

|                 | Ref | Description                                                                              |
|-----------------|-----|------------------------------------------------------------------------------------------|
| Recommendations | 1   | Scottish Water and Ironside Farrar adopt the findings of this report.                    |
|                 | 2   | It is recommended that the development can go ahead without any upgrades on the network. |



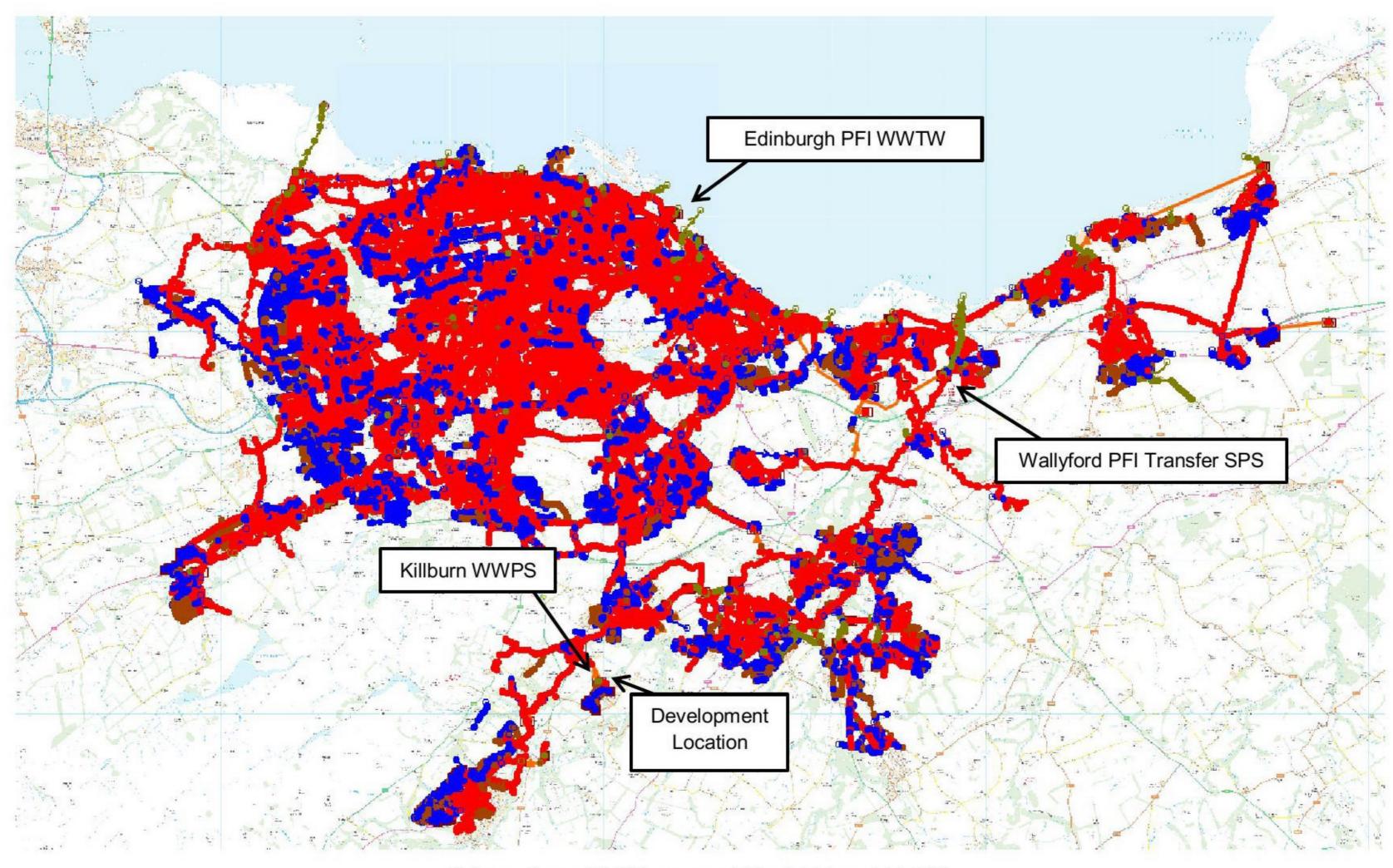
# 2. Introduction

#### 2.1 Overview

In August 2016, RPS was commissioned to carry out a Drainage Impact Assessment to analyse the proposed discharge on a new residential development in Roslin, Midlothian; located approximately 7km to the South of Edinburgh.

The new development will comprise of 300 new residential units (to be built in two Phases) covering an area of approximately 11.9 Ha. The developer expects to discharge an average foul flow of 1.43 l/s to the Scottish water (SW) sewer network to be treated at the Edinburgh PFI Wastewater Treatment Works (WWTW).

This report outlines the findings of the Stage 1 assessment, the objectives of which are outlined in Section 2.3.


# 2.2 Drainage Area Study Background

The Greater Edinburgh sewered area is located on the east coast of Scotland. The Edinburgh WwTW serves a population of approximately 677,900 people.

The development is located in the village of Roslin located approximately 7km to the south of Edinburgh city centre. The village drains to a pumping station (Killburn WWPS) to the north of the village where the flow is conveyed by gravity for 13km to the terminal pumping station (WALLYFORD PFI TRANSFER SPS). This flow is then pumped into the main Edinburgh drainage network and conveyed by gravity to the Edinburgh Seafield PFI WWTW.



# Ironside Farrar Former Roslin Institute, Midlothian DIA



Ordnance Survey data © Crown copyright and database rights 2010

Figure 1 – Overview of the Edinburgh WWTW Model and Development Location



# 2.3 Study Brief and Objectives

The objectives of the study are listed below:

# Stage 1

#### Collate Site Information

 Liaise with the developers to obtain detailed information on the proposed development.

### **Update Existing Model**

 Incorporate the proposed connection for the development into the existing hydraulic sewerage model provided by SW.

# Carry out a Development Assessment

 Investigate the impact of the foul discharge from the proposed development on the separate foul sewerage system downstream of the proposed connection points both in terms of hydraulic performance (flooding) and environmental performance (water quality impact from Combined Sewer Overflow (CSO) discharges).

### Initial Solution Identification

- Where the proposed development flows are shown to cause an unacceptable detriment to the current hydraulic and/or environmental performance, identify initial potential solutions that may satisfy the requirements of the Client Brief (i.e. maintain current performance levels) for further consideration in Stage 2.
- Produce a Stage 1 Report summarising all assessment work undertaken including recommendations and conclusions.

### 2.4 Information Received

The following information was received and utilised during the study:

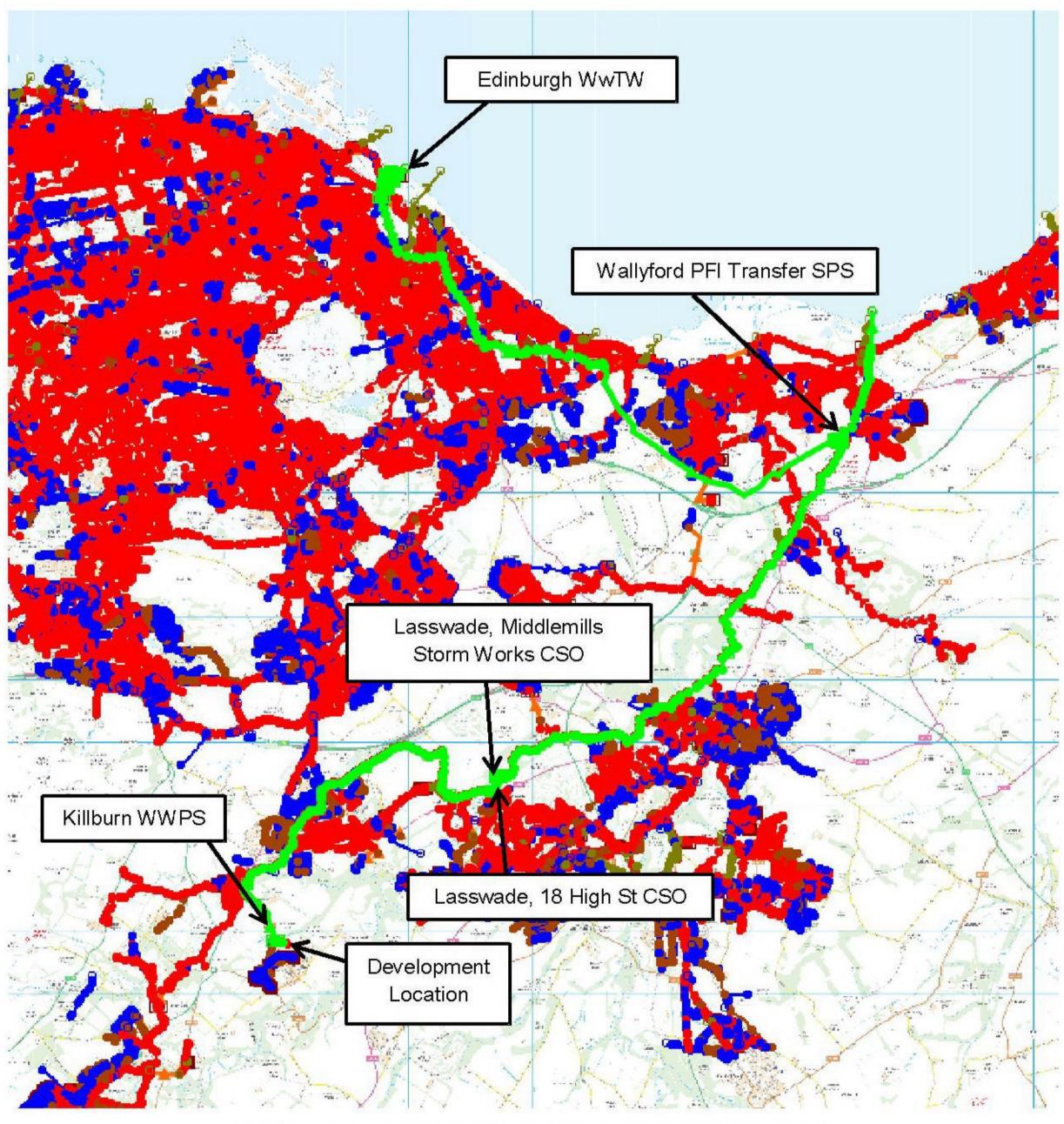
#### Scottish Water

- Hydraulic Model.
- SW GIS Sewer and Mapping Data.

### Developer's Agent

Drawings:






- Former Roslin Institute Demolition and Asbestos Removal Works 8414\_103 A
- Record of Indicative Development Layout 3932/App 3a



# 3. Existing system

Figure 2 shows the proposed development site. The downstream route from the development to the Edinburgh PFI WwTW has also been highlighted.



Contains Ordnance Survey data © Crown copyright and database rights 2010

Figure 2: Proposed development location and key downstream assets to Edinburgh WwTW



#### 3.1 Site Details

Size - Total area of 11.9 Ha.

**Location** – On brownfield land in the village of Roslin, 7km south of Edinburgh city centre.

Previous/ Current Usage – Brownfield.

**Sewerage Details** – A 225 mm diameter sewer flowing east to west from the south west boundary of the development site conveys flows away from the development site towards Killburn WWPS. On completion, 300 houses will be discharged to this sewer.

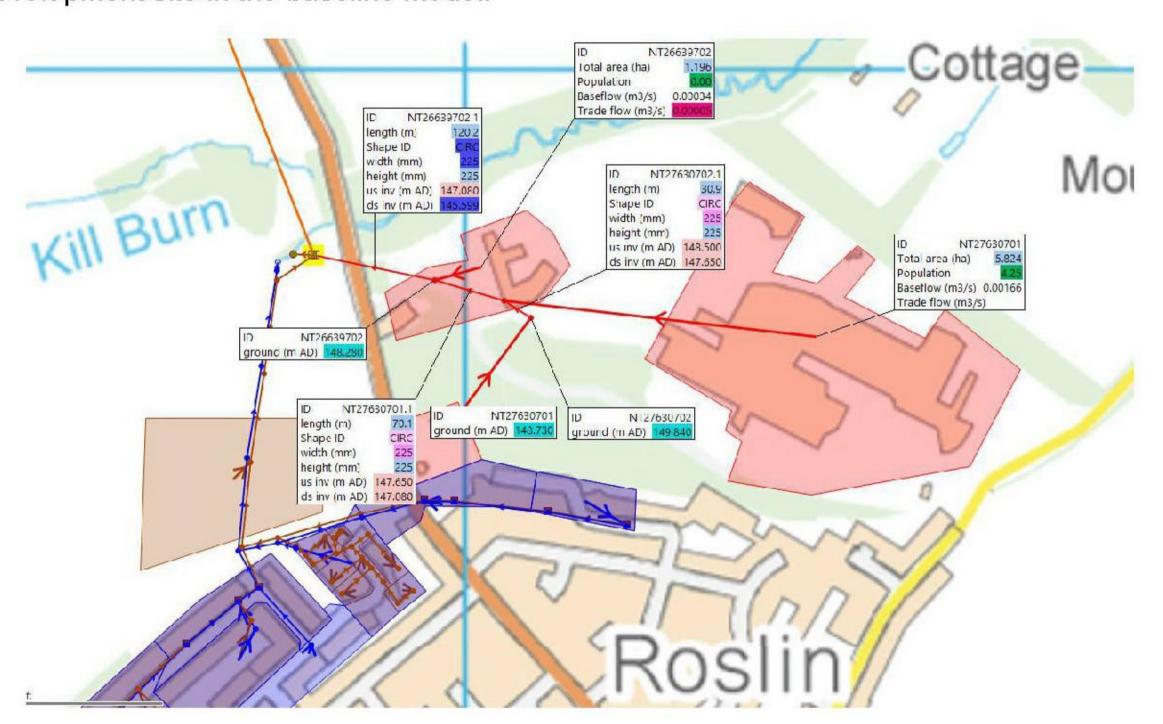
# 3.2 Intermittent Discharges Impacted by Proposed Development

There are five intermittent discharges located directly downstream of the development towards the Wallyford PFI Transfer WWPS (Killburn WWPS overflow, Lasswade, 18 High St CSO, Lasswade, Middlemills Storm Works CSO, Wallyford PFI Transfer CSO and Edinburgh PFI CSO), which could be impacted directly by the proposed development.

The CSO details are listed in Table 1 and their locations shown in Figure 2:

| Critical Downstream CSOs in Existing System               |                   |            |                      |  |  |  |  |
|-----------------------------------------------------------|-------------------|------------|----------------------|--|--|--|--|
| CSO Name Overflow Model ID Outfall Model ID Discharges to |                   |            |                      |  |  |  |  |
| Killburn WWPS overflow                                    | NT26638801_Screen | NT26638899 | Kill Burn            |  |  |  |  |
| Lasswade, 18 High St CSO                                  | NT30662201_CSO    | NT30663206 | River North Esk      |  |  |  |  |
| Lasswade, Middlemills Storm Works<br>CSO                  | NT30664420        | NT30664404 | River North Esk      |  |  |  |  |
| Wallyford PFI Transfer CSO                                | NT35718801_flume2 | NT36734901 | Firth of Forth Coast |  |  |  |  |
| Edinburgh PFI CSO                                         | NT28768004        | NT28768101 | Firth of Forth Coast |  |  |  |  |

Table 1: Downstream Critical CSOs in Existing System




# 3.3 Existing Model Update

According to the documentation, the supplied model was built using InfoWorks ICM version 6.5 and this version of ICM was also used for the modelling work on this DIA.

The former Roslin Institute development is proposed by the developer to be built in two Phases. The first Phase would consist in demolish the existing Poultry Centre and Logan Building whilst retaining the existing Wallace Building and constructing 200 houses. For the second Phase it is then proposed to demolish this remaining building and construct a further 100 dwellings. As such, subcatchment NT27630701 will be deleted on the model for the Phase 1 scenario removing the associated discharging foul flow of 1.67 l/s. Afterwards, for the Phase 2 scenario; subcatchment NT26639702 was deleted removing the associated trade flow of 0.05 l/s and additional residential flow of 0.34 l/s.

No updates were applied to the baseline model. Figure 3 shows the sewer network at the development site in the baseline model.



Contains Ordnance Survey data © Crown copyright and database rights 2010

Figure 3: Model at Former Roslin Institute Development Site



# 4. Proposed Development & developed system amendments

| Brief       | "Calculate flows for the proposed development. Input additional flow into the model." |
|-------------|---------------------------------------------------------------------------------------|
| Requirement |                                                                                       |

# 4.1 Proposed Land Usage

The former Roslin Institute development site will consist of 300 residential units upon completion within an area of 11.9 Ha. It is highlighted that it is proposed by the developer to build the new dwellings in two Phases. The first Phase would consist of 200 houses being developed and the existing Wallace Building initially retained. For the second Phase it is then proposed to demolish this remaining building and construct a further 100 dwellings. Full modelling parameters can be seen in Appendix 1.

# 4.2 Proposed Connection Details

It is proposed for the whole development to be connected to a 225 mm diameter sewer at the south-west boundary of the development site through manhole NT26639702, which conveys flows to Killburn WWPS to the north-west. The first Phase of the development will be connected to manhole NT27630701 (as the Wallace building is retained) and Phase 2 will be connected to manhole NT26639702 which is the proposed connection point for the whole development. Details of the estimated discharge rates for each Phase of the proposed development are detailed in Table 2 which also includes a summary of the estimated discharge rates. Note that there is a reduction in foul flow in the Phase 2 of the development due to the removal of the remaining offices at the Wallace Building.

| Connection Point Details |                              |                 |                               |                                   |                    |                              |  |
|--------------------------|------------------------------|-----------------|-------------------------------|-----------------------------------|--------------------|------------------------------|--|
| Development Section      | Proposed<br>Connection Point | No Of<br>Houses | Total Area of<br>Section (Ha) | Assumed Contributing<br>Area (Ha) | Foul Flow<br>(I/s) | Future<br>Infiltration (I/s) |  |
| Phase 1                  | NT27630701                   | 200             | 7.93                          | 7.93                              | 0.95               | 0.095                        |  |
| Phase 2                  | NT26639702                   | 100             | 3.97                          | 3.97                              | 0.48               | 0.048                        |  |
| Whole Development        | NT26639702                   | 300             | 11.9                          | 11.9                              | 1.43               | 0.143                        |  |

Table 2: Connection Points and Estimated Discharge Rates from Phase of development



# 4.3 Dry Weather Flow

It is proposed by the developer to complete the re-development of the site in two Phases. Phase 1 would provide 200 residential units whilst maintaining use of the Wallace Building on the site, discharging an average foul flow of 0.95 l/s. At a later date, Phase 2 would involve the demolition of the Wallace Building and the construction of an additional 100 properties. The associated removal of trade flows and additional residential flows are expected to give a final dry weather flow discharge rate of 1.43 l/s following completion of both phases of the development.

The foul flow was calculated assuming an occupancy rate of 2.5 people per household and assuming a discharge rate of 165 litres per capita per day.

System flows are scaled by a peaking factor of 2.5 for flooding and surcharge level assessment whereas a factor of 1 has been applied for time series analysis.

# 4.4 Surface Water Runoff

The surface water from the development will be discharged into a nearby watercourse and controlled via a SUDs scheme and will not be included in this assessment.

### 4.5 Future Misconnections & Infiltration

Table 2 shows how much contributing area and future infiltration was added to each section of the development. An allowance of 1% of the total contributing area was applied to represent runoff from future cross connections into consideration. This is standard industry practice and gives a small factor of safety. An additional nominal allowance of 10% foul flow was added to the base flow to take into consideration any future infiltration which may occur as the development drainage network ages and deteriorates.



# 5. Stage 1 Assessment – Existing / Developed Comparisons

| Brief |        |
|-------|--------|
| Requi | rement |

"Determine existing / developed system flood volumes, spill volumes and frequency for CSOs, in locations impacted upon by the development."

# 5.1 Hydraulic Assessment

| Brief       |  |
|-------------|--|
| Requirement |  |

"Compare analysis of the existing model to the developed model in terms of flood volumes and surcharge levels."

Investigations to determine the effect of the proposed development upon the existing downstream network have been undertaken using 30 year return period rainfall events of 30, 60, 120, 240, 360, 600, 720 and 1440 minute durations, for both summer and winter FEH rainfall profiles. The analysis has been undertaken to determine the potential flooding detriment throughout the complete catchment area.

### **5.1.1 Flooding Assessment**

The comparative analysis showed that adding the proposed development to the network would not cause an increase in flooding on the existing network in either Phase 1 or Phase 2.

The assessment predicted a decrease in flow in the catchment when the proposed development was added to the network, based on the completed simulations. Table 3 shows the total flow volume obtained on simulations on sewer link NT26639702.1 which is directly downstream of the development. The proposed development will produce smaller flow and the Kilburn PS, located directly downstream from the new development, will control the incoming flow to the sewer system.

| Total Flow Volume on NT26639702.1 (DS of Development) |          |          |                             |                             |  |
|-------------------------------------------------------|----------|----------|-----------------------------|-----------------------------|--|
| E                                                     | vent .   | Baseline | Development<br>Phase 1 (m³) | Development<br>Phase 2 (m³) |  |
|                                                       | M30-30   | 208.975  | 169.434                     | 191.42                      |  |
|                                                       | M30-60   | 260.903  | 186.935                     | 205.129                     |  |
|                                                       | M30-120  | 342.566  | 220.566                     | 230.26                      |  |
| C                                                     | M30-240  | 460.955  | 270.316                     | 272.676                     |  |
| Summer                                                | M30-360  | 563.203  | 315.801                     | 311.705                     |  |
|                                                       | M30-600  | 740.794  | 400.422                     | 386.512                     |  |
|                                                       | M30-720  | 819.009  | 437.268                     | 420.419                     |  |
|                                                       | M30-1440 | 1256.837 | 656.981                     | 624.208                     |  |
|                                                       | M30-30   | 213.058  | 171.14                      | 194.273                     |  |
| Winter                                                | M30-60   | 268.643  | 191.38                      | 208.93                      |  |
|                                                       | M30-120  | 349.69   | 224.063                     | 233.971                     |  |



| Total Flow | Total Flow Volume on NT26639702.1 (DS of Development) |                             |                             |  |  |  |  |  |
|------------|-------------------------------------------------------|-----------------------------|-----------------------------|--|--|--|--|--|
| Event      | Baseline                                              | Development<br>Phase 1 (m³) | Development<br>Phase 2 (m³) |  |  |  |  |  |
| M30-240    | 478.089                                               | 276.621                     | 276.835                     |  |  |  |  |  |
| M30-360    | 583.096                                               | 321.833                     | 314.947                     |  |  |  |  |  |
| M30-600    | 770.683                                               | 407.317                     | 389.381                     |  |  |  |  |  |
| M30-720    | 852.749                                               | 446.472                     | 424.935                     |  |  |  |  |  |
| M30-1440   | 1319.633                                              | 673.659                     | 631.227                     |  |  |  |  |  |

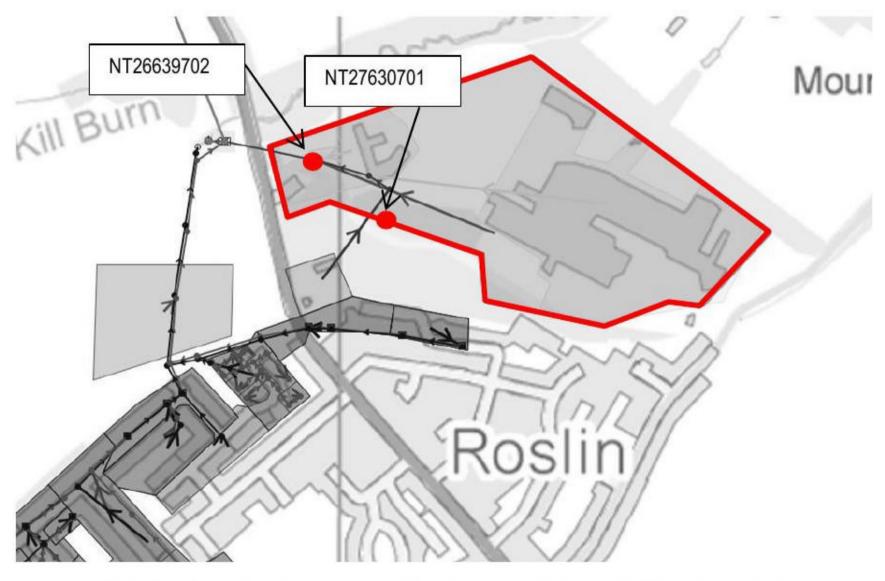
Table 3: Flow Volume Comparison downstream the Proposed Development

A comparison of inflow results for different duration events at Kilburn PS can be found in Appendix 2.

### 5.1.2 Surcharge levels

A comparative analysis of the level increase at manholes with less than 0.5 m freeboard was undertaken for the Phase 1 and Phases 2 post-development scenarios.

The comparative analysis showed that adding the proposed development to the network would cause a minimal impact on surcharge level to the manholes located directly downstream of the development. Although those manholes had more than 0.5m freeboard, an assessment of the manhole levels was undertook showing an increase of 0.006 m found on manhole NT27630701 during the M30-30 summer storm event on Phase 1 scenario and an increase of 0.017m found on manhole NT26639702 during the M30-30 summer storm event on Phase 2 Scenario. The results of maximum increases are listed in Table 4. The locations of the affected manholes are shown in Figure 4.


| PHASE 1 - Reduction in available freeboard |                                 |        |                      |                               |                        |  |  |
|--------------------------------------------|---------------------------------|--------|----------------------|-------------------------------|------------------------|--|--|
|                                            | Available Freeboard (m)         |        |                      |                               |                        |  |  |
| Node ID                                    | Storm                           | Season | Base Model Freeboard | Development Phase 1 Freeboard | Change in<br>Freeboard |  |  |
| NT27630702                                 | Development Phase<br>1 M30-1440 | Summer | -1.313               | -1.313                        | 0                      |  |  |
| NT27630701                                 | Development<br>Phase 1 M30-30   | Summer | -0.989               | -0.983                        | 0.006                  |  |  |
| NT26639702                                 | Development Phase<br>1 M30-30   | Summer | -1.109               | -1.11                         | -0.001                 |  |  |
| NT26638802                                 | Development Phase<br>1 M30-240  | Summer | -1.044               | -1.048                        | -0.004                 |  |  |

| PHASE 2 - Reduction in available freeboard |                                 |        |                         |                                  |                        |  |  |
|--------------------------------------------|---------------------------------|--------|-------------------------|----------------------------------|------------------------|--|--|
|                                            |                                 |        | Available Freeboard (m) |                                  |                        |  |  |
| Node ID                                    | Storm                           | Season | Base Model Freeboard    | Development Phase 2<br>Freeboard | Change in<br>Freeboard |  |  |
| NT27630702                                 | Development Phase<br>2 M30-1440 | Summer | -1.313                  | -1.313                           | 0                      |  |  |



| NT27630701 | Development Phase<br>2 M30-1440            | Winter | -0.989 | -1.051 | -0.062 |  |  |  |
|------------|--------------------------------------------|--------|--------|--------|--------|--|--|--|
|            | PHASE 2 - Reduction in available freeboard |        |        |        |        |  |  |  |
| NT26639702 | Development<br>Phase 2 M30-30              | Summer | -1.109 | -1.092 | 0.017  |  |  |  |
| NT26638802 | Development Phase<br>2 M30-240             | Summer | -1.044 | -1.047 | -0.003 |  |  |  |

Table 4: Predicted change in freeboard at manholes downstream the proposed development



Contains Ordnance Survey data © Crown copyright and database rights 2010

Figure 4: Location of Manholes downstream the proposed development with Increased Surcharge Levels



#### 5.2 CSO Assessment

| Brief       |
|-------------|
| Requirement |

Compare analysis of the existing model to the developed model in terms of spill volumes and number of activations from CSOs affected by the development.

Calculate Formula "A" for existing and proposed flows at CSOs affected by the development. Calculate CSO settings in multiples of Dry Weather Flow."

# 5.2.1 CSO Spill Frequency and Volume Assessment

Brief Requirement "Compare analysis of the existing model to the developed model in terms of spill volumes and number of activations from CSOs affected by the development."

In accordance with the Scottish Water Development Brief, an analysis of spill volumes during TSR events has been conducted to assess the performance of the downstream CSOs. The typical year TSR data set for the Edinburgh WWTW catchment area which was provided by Scottish Water (261 separate rainfall events) was used for this assessment.

The five CSOs mentioned in Section 3.2 located on the downstream route of the development were analysed in both Phase 1 and Phase 2 of the development to assess the impact on the network. A summary of the outfall activations for the three scenarios can be seen in Table 5 and a summary of the overall spill volumes for each CSO can be seen in Table 6. From these results none of the assessed CSO is predicted to increase the number of spills per annum under post-development scenario Phase 1 and the Wallyford PFI Transfer CSO is predicted to increase by two spills per annum under post-development scenario Phase 2. Annual spill volumes are generally predicted to decrease, with a significant reduction (59.57% at Phase 1 and 65.68% at Phase 2) predicted at Killburn WWPS overflow, located directly downstream the development. However, the Wallyford PFI Transfer CSO is predicted to increase in annual spill volume (1.35% at Phase 1 and 0.91% at Phase 2). The assessment has been revaluated and this increase has been considered to be associated with model instabilities rather than as a detriment due to the inclusion of the development.

|                                       | CSO Spill Frequency |                               |                                                                   |                                                                   |                                   |  |  |  |
|---------------------------------------|---------------------|-------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--|--|--|
| CSO Name                              | Overflow Model ID   | Existing<br>Network<br>Spills | Developed Phase 1<br>Network with<br>Mitigation Network<br>Spills | Developed Phase 2<br>Network with<br>Mitigation Network<br>Spills | Comments                          |  |  |  |
| Killburn WWPS overflow                | NT26638801_Screen   | 1                             | 1                                                                 | 1                                                                 | No additional spills              |  |  |  |
| Lasswade, 18 High St CSO              | NT30662201_CSO      | 52                            | 52                                                                | 52                                                                | No additional spills              |  |  |  |
| Lasswade, Middlemills Storm Works CSO | NT30664420          | 54                            | 54                                                                | 54                                                                | No additional spills              |  |  |  |
| Wallyford PFI Transfer CSO            | NT35718801_flume2   | 32                            | 32                                                                | 34                                                                | 2 additional spills<br>at Phase 2 |  |  |  |
| Edinburgh PFI CSO                     | NT28768004          | 88                            | 88                                                                | 88                                                                | No additional spills              |  |  |  |

Table 5: CSO Spill Frequency



| CSO Overall Spill Volumes Comparison        |                       |                                                             |                                                                      |                                                                      |                                          |                                       |                                          |                                          |
|---------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|
| CSO Name                                    | Overflow<br>Model ID  | Existing<br>Network<br>Spill Volume<br>(TSR Series)<br>(m³) | Developed<br>Phase 1 Network<br>Spill Volume<br>(TSR Series)<br>(m³) | Developed<br>Phase 2<br>Network Spill<br>Volume (TSR<br>Series) (m³) | Increase<br>In Volume<br>(m³)<br>Phase 1 | %<br>Increase<br>In Volume<br>Phase 1 | Increase<br>In Volume<br>(m³)<br>Phase 2 | %<br>Increase<br>In<br>Volume<br>Phase 2 |
| Killburn WWPS overflow                      | NT26638801_<br>Screen | 169                                                         | 68                                                                   | 58                                                                   | -101                                     | -59.57%                               | -111                                     | -65.68%                                  |
| Lasswade, 18 High<br>St CSO                 | NT30662201_<br>CSO    | 44606                                                       | 43479                                                                | 43385                                                                | -1127                                    | -2.53%                                | -1222                                    | -2.81%                                   |
| Lasswade,<br>Middlemills Storm<br>Works CSO | NT30664420            | 197307                                                      | 192695                                                               | 192399                                                               | -4613                                    | -2.34%                                | -4908                                    | -2.55%                                   |
| Wallyford PFI<br>Transfer CSO               | NT35718801_<br>flume2 | 316543                                                      | 320804                                                               | 319476                                                               | 4262                                     | 1.35%                                 | 2933                                     | 0.91%                                    |
| Edinburgh PFI CSO                           | NT28768004            | 61528                                                       | 61525                                                                | 61530                                                                | -3                                       | -0.01%                                | 2                                        | 0.00%                                    |

**Table 6: CSO Overall Spill Volumes Comparison** 

### 5.2.2 Formula "A" Assessment

There are five CSOs located directly on the downstream route from the development towards WwTW. The calculated Formula "A" values for each of these are shown in Table 7 for both pre- and post-development scenarios. From these results it is highlighted that all CSOs with an exception of Killburn WWPS overflow are predicted to fail on the baseline scenario. However, there is an overall improvement at all the CSOs in predicting to pass Formula A under either the post-development Phase 1 or Phase 2.

As all these CSOs with the exception of Killburn WWPS are predicted to fail in the predevelopment scenario, it would be recommended that these overflows are further investigated by Scottish Water. Full results of the Formula 'A' assessment can be seen in Appendix 3.

| Formula "A" Results                      |                |                   |                      |                      |                         |                     |                        |
|------------------------------------------|----------------|-------------------|----------------------|----------------------|-------------------------|---------------------|------------------------|
|                                          | cso            | Formula 'A' (I/s) |                      | Passes               | Passes                  | Passes              |                        |
| CSO Name                                 | Setting (m³/s) | Existing          | Developed<br>Phase 1 | Developed<br>Phase 2 | Formula 'A'<br>Baseline | Formula 'A' Phase 1 | Formula 'A'<br>Phase 2 |
| Killburn WWPS overflow                   | 0.027          | 7                 | 9                    | 10                   | Yes                     | Yes                 | Yes                    |
| Edgefield Industrial Estate CSO          | 0.190          | 193               | 195                  | 197                  | No                      | No                  | No                     |
| Lasswade, 18 High St CSO                 | 0.105          | 206               | 208                  | 209                  | No                      | No                  | No                     |
| Lasswade, Middlemills Storm Works<br>CSO | 0.609          | 944               | 946                  | 947                  | No                      | No                  | No                     |
| Wallyford PFI Transfer CSO               | 0.000          | 9936              | 9938                 | 9940                 | No                      | No                  | No                     |

Table 7: Formula "A" Assessment



#### 5.3 Lowest Floor Level Assessment

Brief Requirement "Final check on the lowest floor level must be made against the hydraulic gradient for the connecting sewer. The floor level must be above the hydraulic gradient for a 1-in-30 year critical storm duration."

It is proposed for the whole development to be connected to a 225 mm diameter sewer at manhole NT26639702. The first Phase of the development will be connected to manhole NT27630701 (as the Wallace building is retained) and Phase 2 will be connected to manhole NT26639702 which is the proposed connection point for the whole development.

An analysis of the proposed connection NT26639702 for Phase 2 and NT27630701 for Phase 1 was carried out to determine difference in TWL for both the baseline and development model and highlight any detriment. The analysis results are detailed in Table 5.

|                | MH Ref     | Floor Level<br>(mAOD) | Max Flood Depth at Critical Duration M30- 30 Summer | TWL at Critical<br>duration (mAOD) |
|----------------|------------|-----------------------|-----------------------------------------------------|------------------------------------|
| Baseline Model | NT27630701 | 140.15                | -1.025                                              | 139.125                            |
| baseline Model | NT26639702 | 140.15                | -1.144                                              | 139.006                            |
| Phase 1        | NT27630701 | 140.15                | -0.983                                              | 139.167                            |
| Phase 2        | NT26639702 | 140.15                | -1.092                                              | 139.058                            |

Table 8 - Freeboard at connection manholes

The model predicts there will be an increase in TWL at manhole NT27630701 on Phase 1 of 0.042m, which gives a freeboard of 0.983m with the Phase 1 development connected during the critical duration event (M30-30S). For Phase 2, the model predicts an increase in TWL at manhole NT26639702 of 0.052m, which gives a freeboard of 1.092 during the critical duration event (M30-30S). In both phases the lowest floor of the development is high than the maximum surcharge level.



# 6. Conclusions and Recommendations

# 6.1 Stage 1 Conclusion

From the hydraulic analysis undertaken it is predicted by the model that the addition of the proposed development in either Phase 1 or Phase 2 would be beneficial in reducing the overall flooding and pollution risk within the catchment. As such no increases in flooding volume due to the addition of the development or surcharge level increase to within 0.5m of cover level are predicted at individual nodes in the catchment in the post-development scenario.

Comparatively, the model predicts an overall reduction in the post-development Phase 1 scenario in spill volumes at downstream CSOs, with a reduction (59.57% at Phase 1 and 65.68% at Phase 2) predicted at Killburn WWPS overflow, located directly downstream from the development. However, the Wallyford PFI Transfer CSO is predicted to increase in annual spill volume (1.35% at Phase 1 and 0.91% at Phase 2). The assessment has been revaluated and this increase has been considered to be associated with model instabilities rather than as a detriment due to the inclusion of the development.

It is highlighted that all CSOs with an exception of Killburn WWPS overflow are predicted to fail on the baseline scenario. However, there is an overall improvement at all the CSOs in predicting to pass Formula A under either the post-development Phase 1 or Phase 2.

As all these CSOs with the exception of Killburn WWPS are predicted to fail the Formula 'A' in the pre-development scenario, it would be recommended that these overflows are further investigated by Scottish Water.

The large reductions in the CSO annual discharge is due to the removal of a significant foul flow discharge that was present on site during its previous usage. This existing foul flow was found to be greater than the future foul flows that the site that were implemented in the analysis; even taking into account the additional 10% infiltration base flow and 1% impermeable area runoff values.

# 6.2 Recommendations

As the development causes no detriment on the network, there is no need for any network upgrades to be installed therefore the Stage 2 assessment for this DIA has not been undertaken.

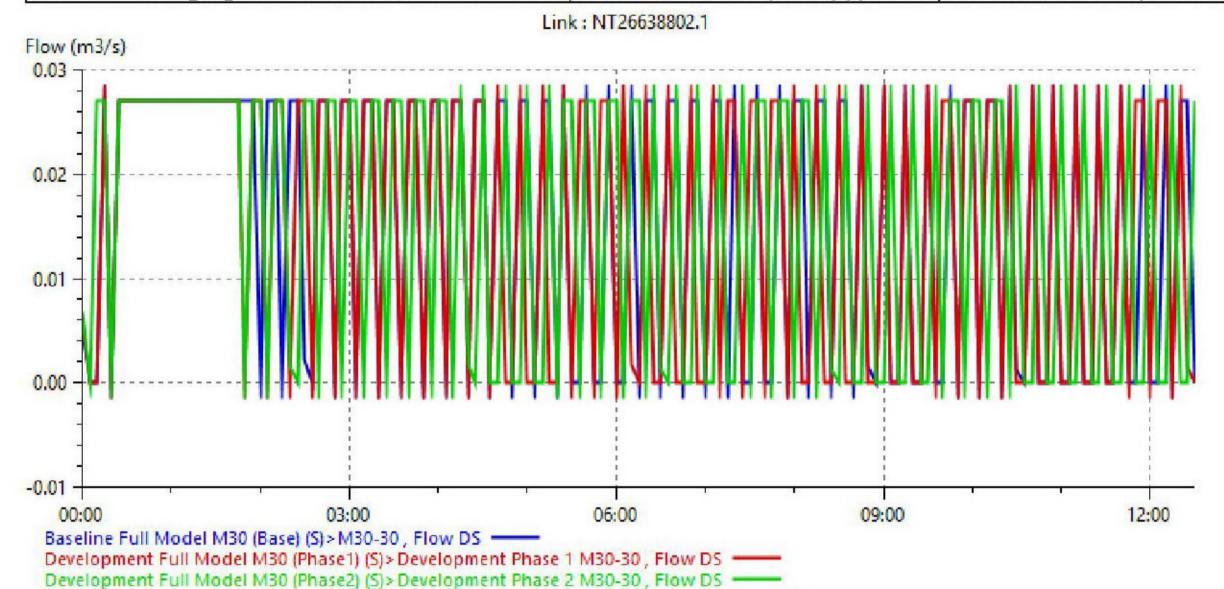
In can be concluded that both of the Phases of the Former Roslin Institute DIA which total 300 residential units can be connected to the network with no additional network upgrades required.



# **Appendix 1** Development Site Layout Model Parameters

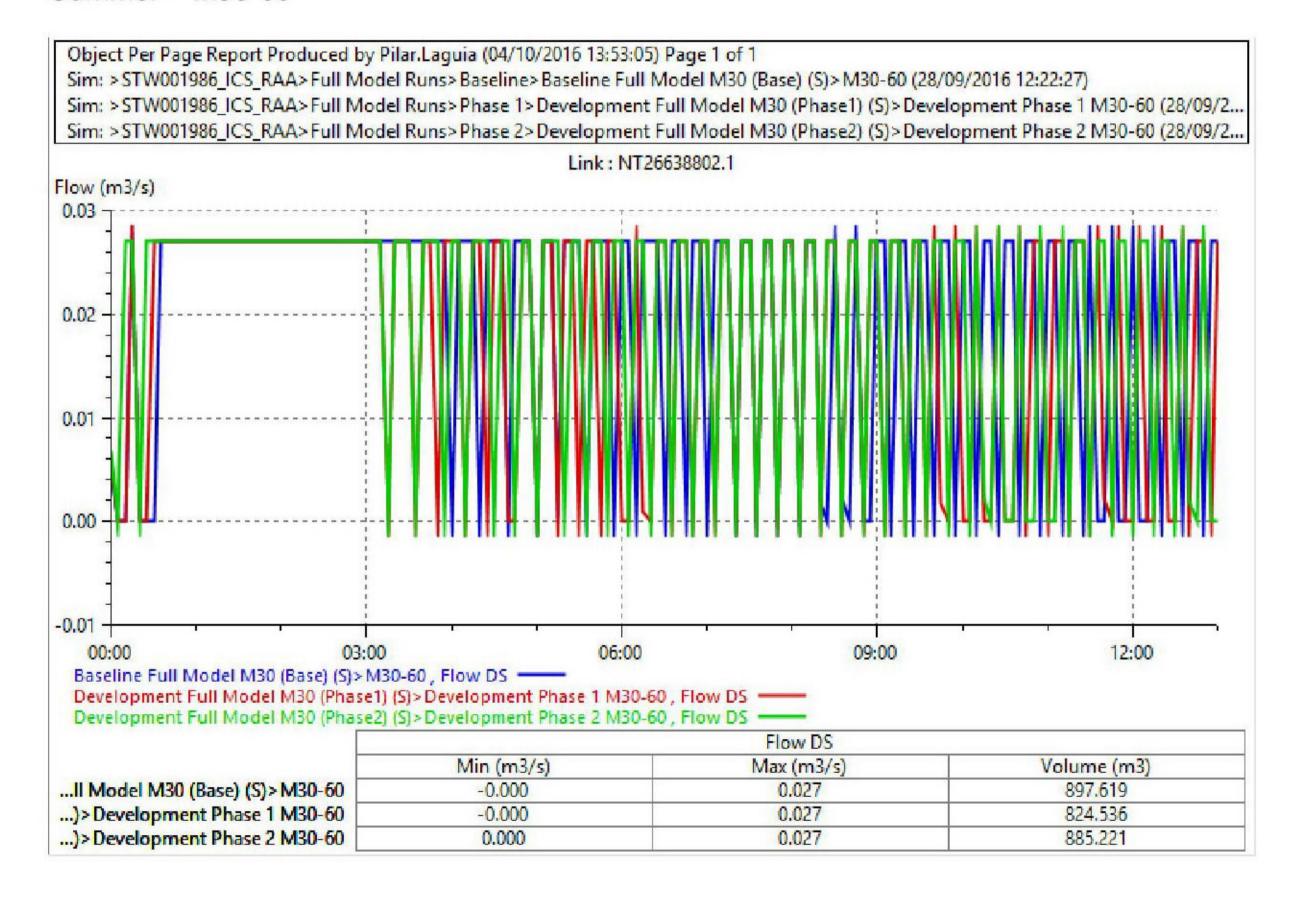
| Model Pa        | Model Parameters Added to represent Development Site and Proposed Diversion Sewer. |                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Object In Model | Object Type Description of Changes                                                 |                                                                                                                                                                                                                   |  |  |  |  |  |
|                 |                                                                                    | Subcatchment added to represent 200 houses in Phase 1 and office trade flows and 300 houses in Phase 2. Connects to manhole NT27630701 at Phase 1 and to manhole NT26639702 at Phase 2 for the whole development. |  |  |  |  |  |
| Roslin_MH       | Subcatchment                                                                       | Phase 1 Population = 500. Total area = 7.93 Ha. Contributing Area = 0.08 Ha. Base flow = 0.000095 m <sup>3</sup> /s                                                                                               |  |  |  |  |  |
|                 |                                                                                    | Phase 2 Population = 750. Total area = 11.9 Ha. Contributing Area = 0.2 Ha. Base flow = 0.000143 m <sup>3</sup> /s                                                                                                |  |  |  |  |  |




# **Appendix 2** Stage 1 Flow Volume Decrease Results

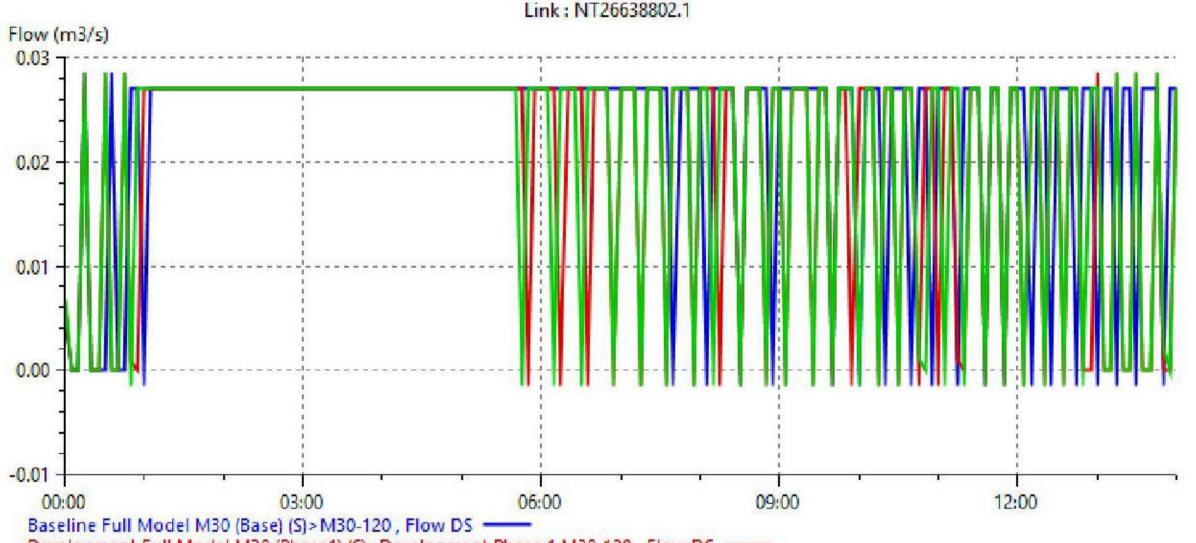
Flow volume decreases due to the addition of the proposed development in the network (and demolition of the previous offices at Roslin Institute). A comparison of inflow results for different duration events at Kilburn PS (located directly downstream the proposed development) are shown below.

|        |          | Kilburn PS (NT | 26638802.1)                 |                             |
|--------|----------|----------------|-----------------------------|-----------------------------|
| Event  |          | Baseline       | Development<br>Phase 1 (m³) | Development<br>Phase 2 (m³) |
|        | M30-30   | 698.882        | 674.192                     | 662.998                     |
|        | M30-60   | 897.619        | 824.536                     | 885.221                     |
|        | M30-120  | 1138.836       | 1009.915                    | 1026.597                    |
| ummor  | M30-240  | 1373.7396      | 1301.886                    | 1321.878                    |
| ummer  | M30-360  | 1560.675       | 1495.745                    | 1511.683                    |
|        | M30-600  | 1892.303       | 1835.556                    | 1869.933                    |
|        | M30-720  | 2006.635       | 2030.865                    | 1998.798                    |
|        | M30-1440 | 2937.569       | 2844.388                    | 2903.875                    |
|        | M30-30   | 738.745        | 678.256                     | 718.786                     |
|        | M30-60   | 902.078        | 825.200                     | 901.135                     |
|        | M30-120  | 1146.936       | 1050.957                    | 1066.495                    |
| Mintor | M30-240  | 1406.136       | 1334.408                    | 1317.283                    |
| Winter | M30-360  | 1592.436       | 1519.656                    | 1537.242                    |
|        | M30-600  | 1893.331       | 1892.256                    | 1902.021                    |
|        | M30-720  | 2094.940       | 2055.168                    | 2047.377                    |
|        | M30-1440 | 3031.081       | 3002.490                    | 2962.845                    |




Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:04:38) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline > Baseline Full Model M30 (Base) (S)> M30-30 (28/09/2016 12:22:27)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (S)> Development Phase 1 M30-30 (28/09/2...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (S)> Development Phase 2 M30-30 (28/09/2...

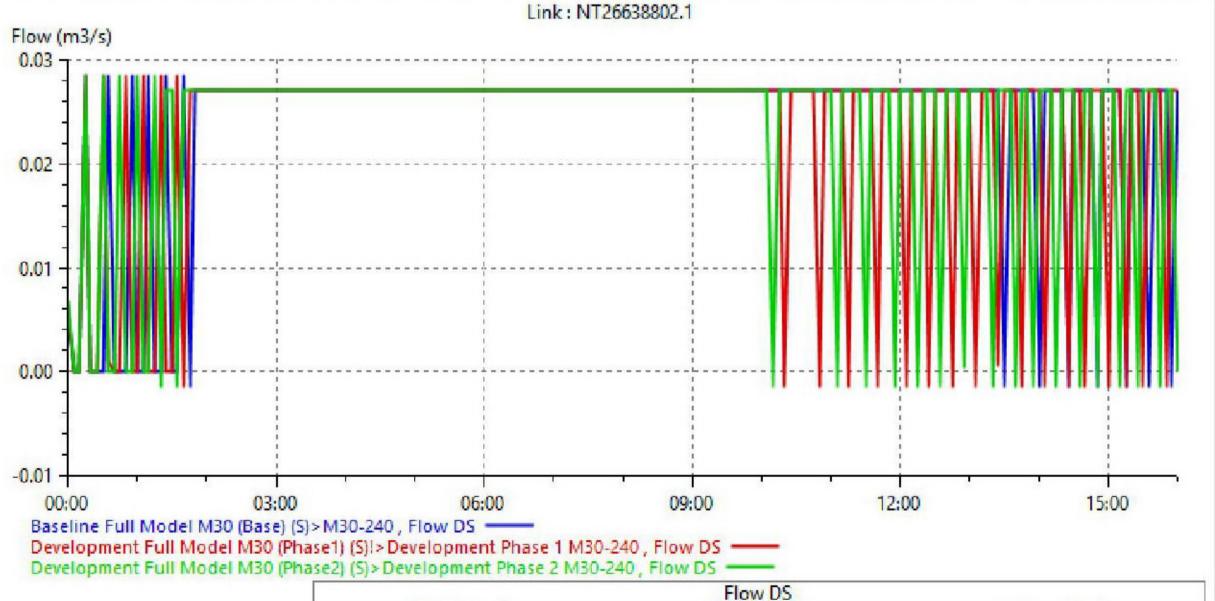



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow DS    |            |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|--|--|--|
| I MAN TO A TO A TO A MAN AND A STORY OF THE ANALYSIS OF THE ASSESSMENT OF THE ASSESS | Min (m3/s) | Max (m3/s) | Volume (m3) |  |  |  |
| ll Model M30 (Base) (S)> M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.000     | 0.027      | 698.882     |  |  |  |
| )> Development Phase 1 M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 674.192     |  |  |  |
| )> Development Phase 2 M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 662.998     |  |  |  |

#### Summer - M30-60






Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:53:59) Page 1 of 1
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (S)> M30-120 (28/09/2016 12:22:28)
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (S)> Development Phase 1 M30-120 (28/09/...
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (S)> Development Phase 2 M30-120 (28/09/...



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow D5    |            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|
| ACAD CONTRACTOR AND C | Min (m3/s) | Max (m3/s) | Volume (m3) |
| l Model M30 (Base) (S)> M30-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.000     | 0.027      | 1138.836    |
| > Development Phase 1 M30-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 1009.915    |
| > Development Phase 2 M30-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 1026.597    |

### Summer - M30-240

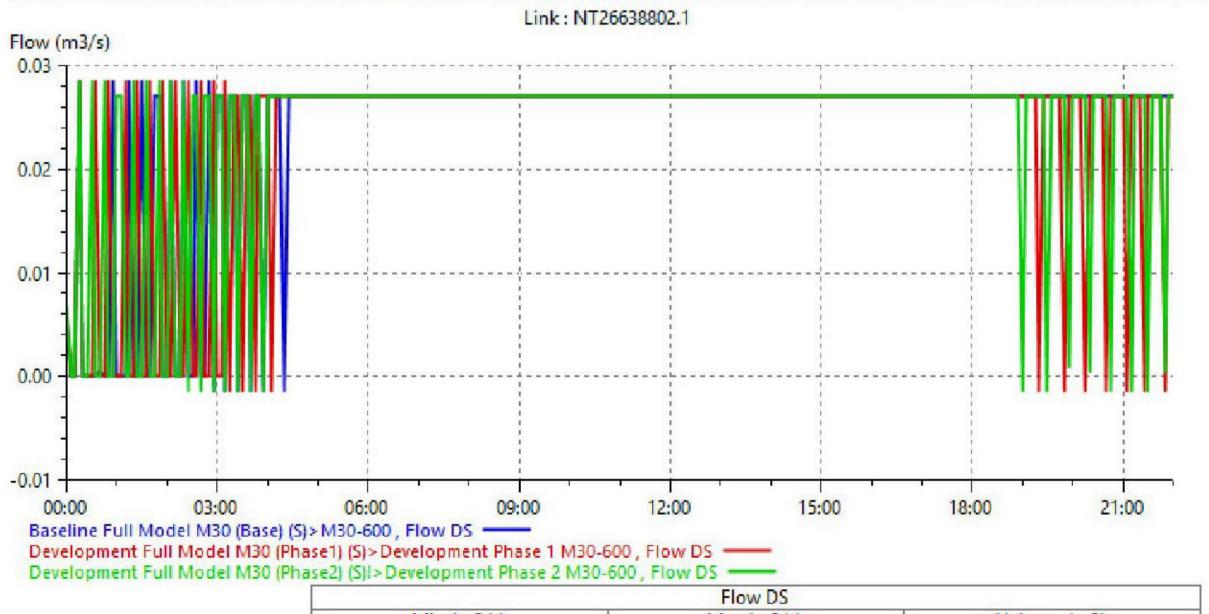
Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:55:51) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (S)> M30-240 (28/09/2016 12:22:28)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (S)!> Development Phase 1 M30-240 (28/09/...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (S)> Development Phase 2 M30-240 (28/09/...



|                                 |            | Flow DS    |             |  |
|---------------------------------|------------|------------|-------------|--|
|                                 | Min (m3/s) | Max (m3/s) | Volume (m3) |  |
| I Model M30 (Base) (S)> M30-240 | -0.000     | 0.027      | 1373.736    |  |
| !> Development Phase 1 M30-240  | -0.000     | 0.027      | 1301.886    |  |
| > Development Phase 2 M30-240   | -0.000     | 0.027      | 1321.878    |  |



Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:56:00) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (S)> M30-360 (28/09/2016 12:22:28)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (S)> Development Phase 1 M30-360 (28/09/...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (S)!> Development Phase 2 M30-360 (03/10/...




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow DS    |            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|
| And the second s | Min (m3/s) | Max (m3/s) | Volume (m3) |
| I Model M30 (Base) (S)> M30-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.000     | 0.027      | 1560.675    |
| > Development Phase 1 M30-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 1495.745    |
| !> Development Phase 2 M30-360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000     | 0.027      | 1511.683    |

Development Full Model M30 (Phase2) (S)!> Development Phase 2 M30-360 , Flow DS

### Summer - M30-600

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:57:12) Page 1 of 1
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Baseline>Baseline Full Model M30 (Base) (S)>M30-600 (28/09/2016 12:22:28)
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 1>Development Full Model M30 (Phase1) (S)>Development Phase 1 M30-600 (28/09/...
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 2>Development Full Model M30 (Phase2) (S)!>Development Phase 2 M30-600 (03/10/...



|                                 | Flow DS    |            |             |
|---------------------------------|------------|------------|-------------|
|                                 | Min (m3/s) | Max (m3/s) | Volume (m3) |
| I Model M30 (Base) (S)> M30-600 | -0.000     | 0.027      | 1892.303    |
| > Development Phase 1 M30-600   | -0.000     | 0.027      | 1835.556    |
| !> Development Phase 2 M30-600  | -0.000     | 0.027      | 1869.933    |



Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:57:16) Page 1 of 1
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (S)> M30-720 (28/09/2016 12:22:28)
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (S)> Development Phase 1 M30-720 (28/09/...
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (S)!> Development Phase 2 M30-720 (03/10/...



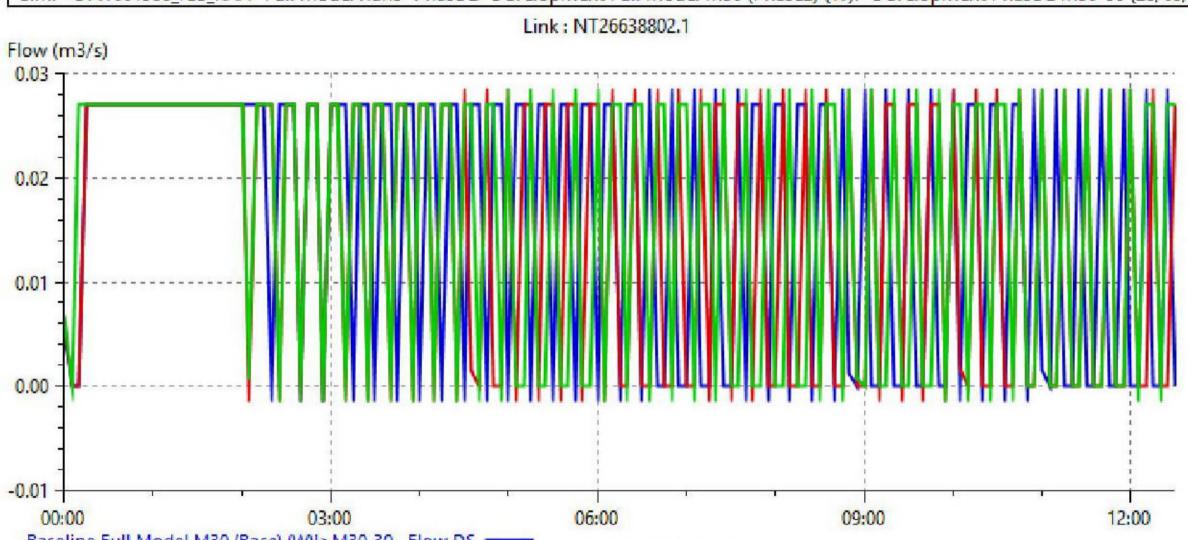
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow DS    |            |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|
| A SECOND | Min (m3/s) | Max (m3/s) | Volume (m3) |
| l Model M30 (Base) (S)> M30-720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.000     | 0.027      | 2006.635    |
| > Development Phase 1 M30-720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000     | 0.027      | 2030.865    |
| !> Development Phase 2 M30-720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.000     | 0.027      | 1998.798    |

#### Summer - M30-1440

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 13:58:26) Page 1 of 1
Sim: > STW001986 ICS\_RAA> Full Model Runs> Baseline > Baseline Full Model M30 (Base) (S)>

Sim: >STW001986\_ICS\_RAA>Full Model Runs>Baseline>Baseline Full Model M30 (Base) (S)>M30-1440 (28/09/2016 12:22:28)

Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 1>Development Full Model M30 (Phase1) (S)>Development Phase 1 M30-1440 (28/09... Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 2>Development Full Model M30 (Phase2) (S)!>Development Phase 2 M30-1440 (03/1...



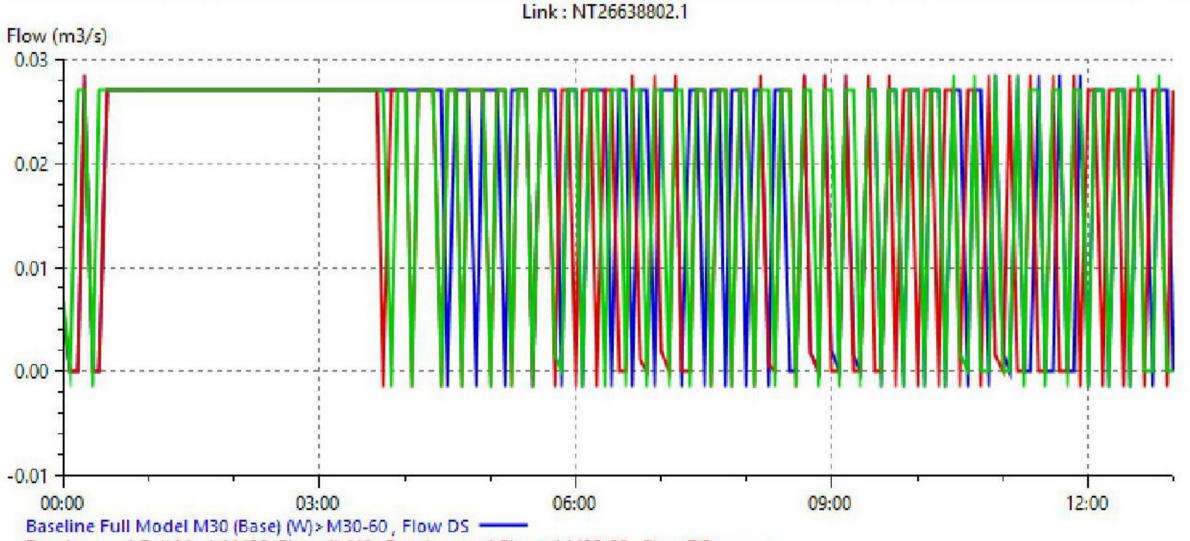

|                                | Flow DS    |            |             |
|--------------------------------|------------|------------|-------------|
|                                | Min (m3/s) | Max (m3/s) | Volume (m3) |
| Model M30 (Base) (S)> M30-1440 | -0.000     | 0.027      | 2937.569    |
| Development Phase 1 M30-1440   | -0.000     | 0.027      | 2844.388    |
| Development Phase 2 M30-1440   | -0.000     | 0.027      | 2903,875    |



#### Winter - M30-30

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:00:22) Page 1 of 1
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (W)!> M30-30 (29/09/2016 08:30:59)
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (W)> Development Phase 1 M30-30 (28/09/...
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (W)!> Development Phase 2 M30-30 (28/09/...



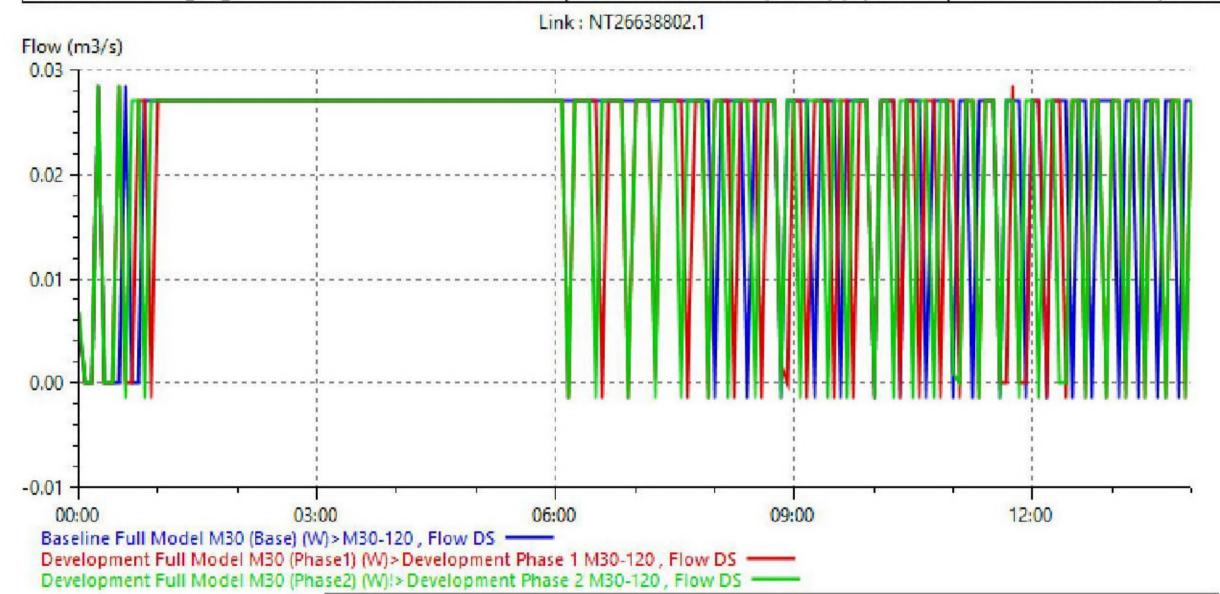

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow DS    |            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------|
| And the second s | Min (m3/s) | Max (m3/s) | Volume (m3) |
| I Model M30 (Base) (W)!> M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.000     | 0.027      | 738.745     |
| )> Development Phase 1 M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000     | 0.027      | 678.256     |
| )!> Development Phase 2 M30-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.000     | 0.027      | 718.786     |

#### Winter - M30-60

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:00:27) Page 1 of 1

Sim: >STW001986\_ICS\_RAA>Full Model Runs>Baseline>Baseline Full Model M30 (Base) (W)>M30-60 (28/09/2016 12:25:16)

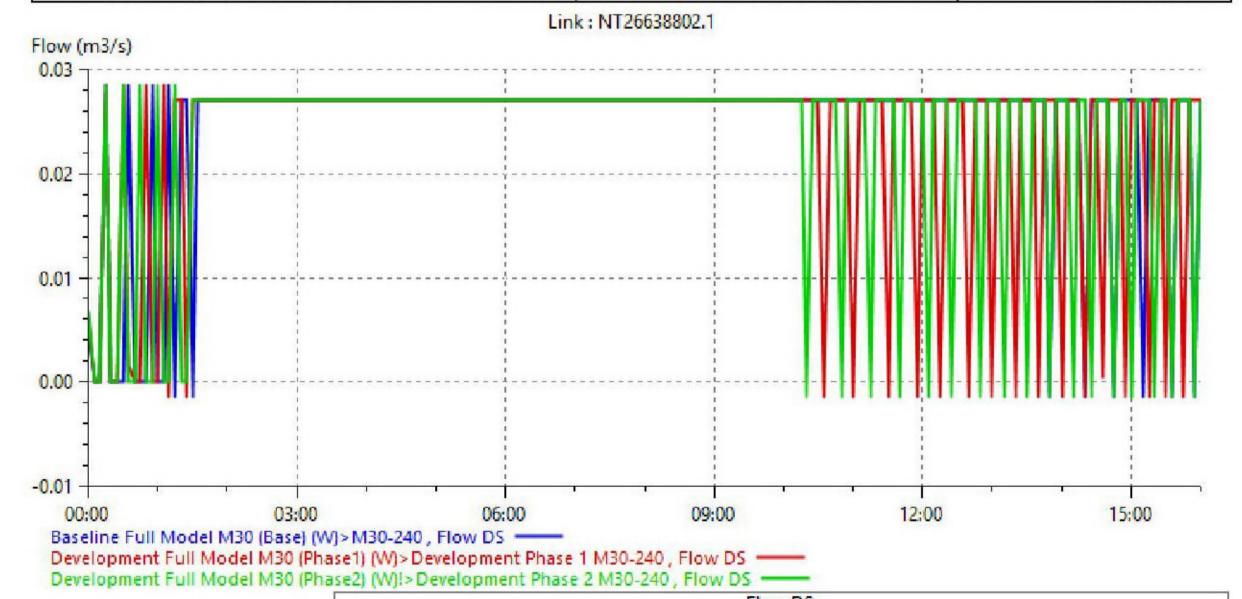
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 1>Development Full Model M30 (Phase1) (W)>Development Phase 1 M30-60 (28/09/... Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 2>Development Full Model M30 (Phase2) (W)!>Development Phase 2 M30-60 (28/09/...




|                                 | Flow DS    |            |             |
|---------------------------------|------------|------------|-------------|
|                                 | Min (m3/s) | Max (m3/s) | Volume (m3) |
| ll Model M30 (Base) (W)> M30-60 | -0.000     | 0.027      | 902.078     |
| )> Development Phase 1 M30-60   | -0.000     | 0.027      | 825.200     |
| )!> Development Phase 2 M30-60  | 0.000      | 0.027      | 901.135     |



#### Winter - M30-120

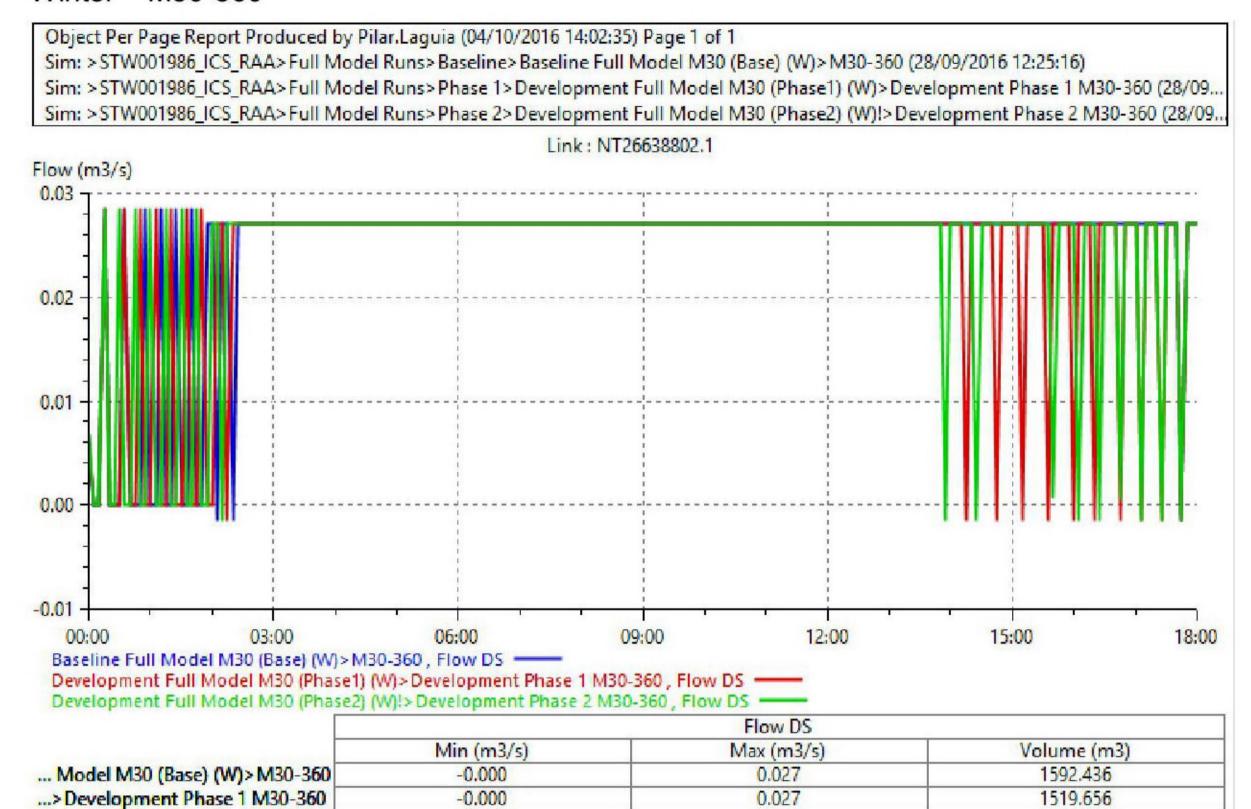

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:01:34) Page 1 of 1
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Baseline>Baseline Full Model M30 (Base) (W)>M30-120 (28/09/2016 12:25:16)
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 1>Development Full Model M30 (Phase1) (W)>Development Phase 1 M30-120 (28/09...
Sim: >STW001986\_ICS\_RAA>Full Model Runs>Phase 2>Development Full Model M30 (Phase2) (W)!>Development Phase 2 M30-120 (28/09...



|                                | Flow DS    |            |             |
|--------------------------------|------------|------------|-------------|
|                                | Min (m3/s) | Max (m3/s) | Volume (m3) |
| Model M30 (Base) (W)> M30-120  | -0.000     | 0.027      | 1146.936    |
| > Development Phase 1 M30-120  | -0.000     | 0.027      | 1050.957    |
| !> Development Phase 2 M30-120 | -0.000     | 0.027      | 1066.495    |

# Winter - M30-240

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:01:40) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (W)> M30-240 (28/09/2016 12:25:16)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (W)> Development Phase 1 M30-240 (28/09...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (W)!> Development Phase 2 M30-240 (28/09...



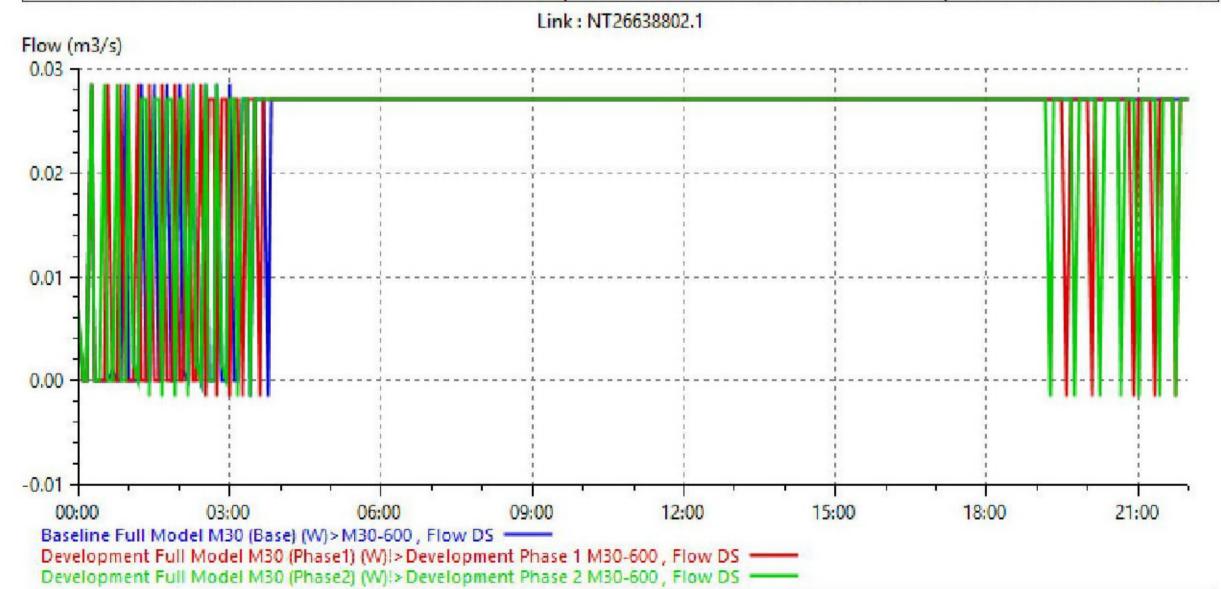

|                                | FIGW D3    |            |             |
|--------------------------------|------------|------------|-------------|
|                                | Min (m3/s) | Max (m3/s) | Volume (m3) |
| Model M30 (Base) (W)>M30-240   | -0.000     | 0.027      | 1406.136    |
| > Development Phase 1 M30-240  | -0.000     | 0.027      | 1334.408    |
| !> Development Phase 2 M30-240 | -0.000     | 0.027      | 1317.283    |

1537.242



#### Winter - M30-360



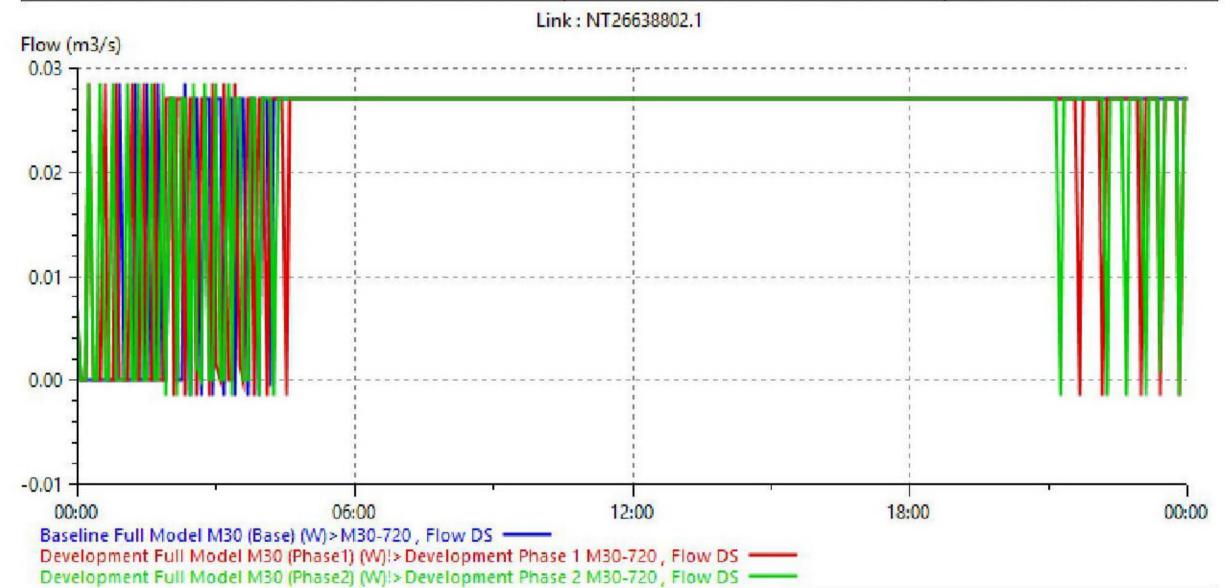

# Winter - M30-600

...!> Development Phase 2 M30-360

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:02:39) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (W)> M30-600 (28/09/2016 12:25:16)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (W)!> Development Phase 1 M30-600 (28/09...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (W)!> Development Phase 2 M30-600 (28/09...

0.027

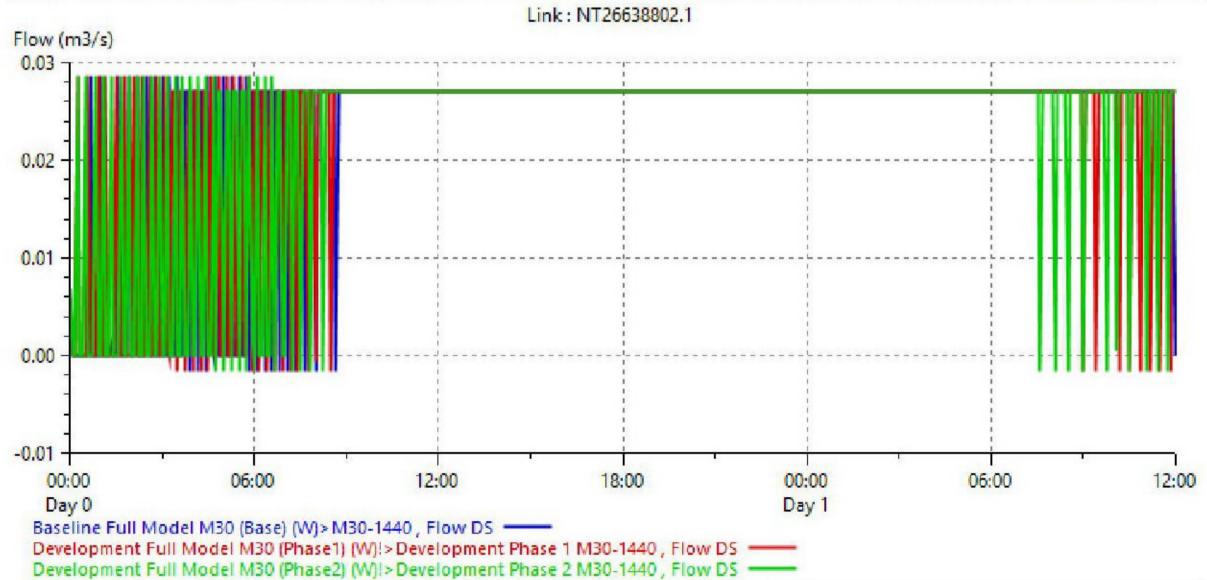
-0.000




|                                | Flow DS    |            |             |
|--------------------------------|------------|------------|-------------|
|                                | Min (m3/s) | Max (m3/s) | Volume (m3) |
| Model M30 (Base) (W)> M30-600  | -0.000     | 0.027      | 1893.331    |
| !> Development Phase 1 M30-600 | -0.000     | 0.027      | 1892.256    |
| !> Development Phase 2 M30-600 | -0.000     | 0.027      | 1902.021    |



#### Winter - M30-720


Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:03:19) Page 1 of 1
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (W)> M30-720 (28/09/2016 12:25:16)
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (W)!> Development Phase 1 M30-720 (28/09...
Sim: > STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (W)!> Development Phase 2 M30-720 (28/09...



|                                | Flow DS    |            |             |
|--------------------------------|------------|------------|-------------|
|                                | Min (m3/s) | Max (m3/s) | Volume (m3) |
| Model M30 (Base) (W)> M30-720  | -0.000     | 0.027      | 2094.940    |
| !> Development Phase 1 M30-720 | -0.000     | 0.027      | 2055.168    |
| !> Development Phase 2 M30-720 | -0.000     | 0.027      | 2047.377    |

#### Winter - M30-1440

Object Per Page Report Produced by Pilar.Laguia (04/10/2016 14:03:24) Page 1 of 1
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Baseline> Baseline Full Model M30 (Base) (W)> M30-1440 (28/09/2016 12:25:16)
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 1> Development Full Model M30 (Phase1) (W)!> Development Phase 1 M30-1440 (28/0...
Sim: >STW001986\_ICS\_RAA> Full Model Runs> Phase 2> Development Full Model M30 (Phase2) (W)!> Development Phase 2 M30-1440 (28/0...

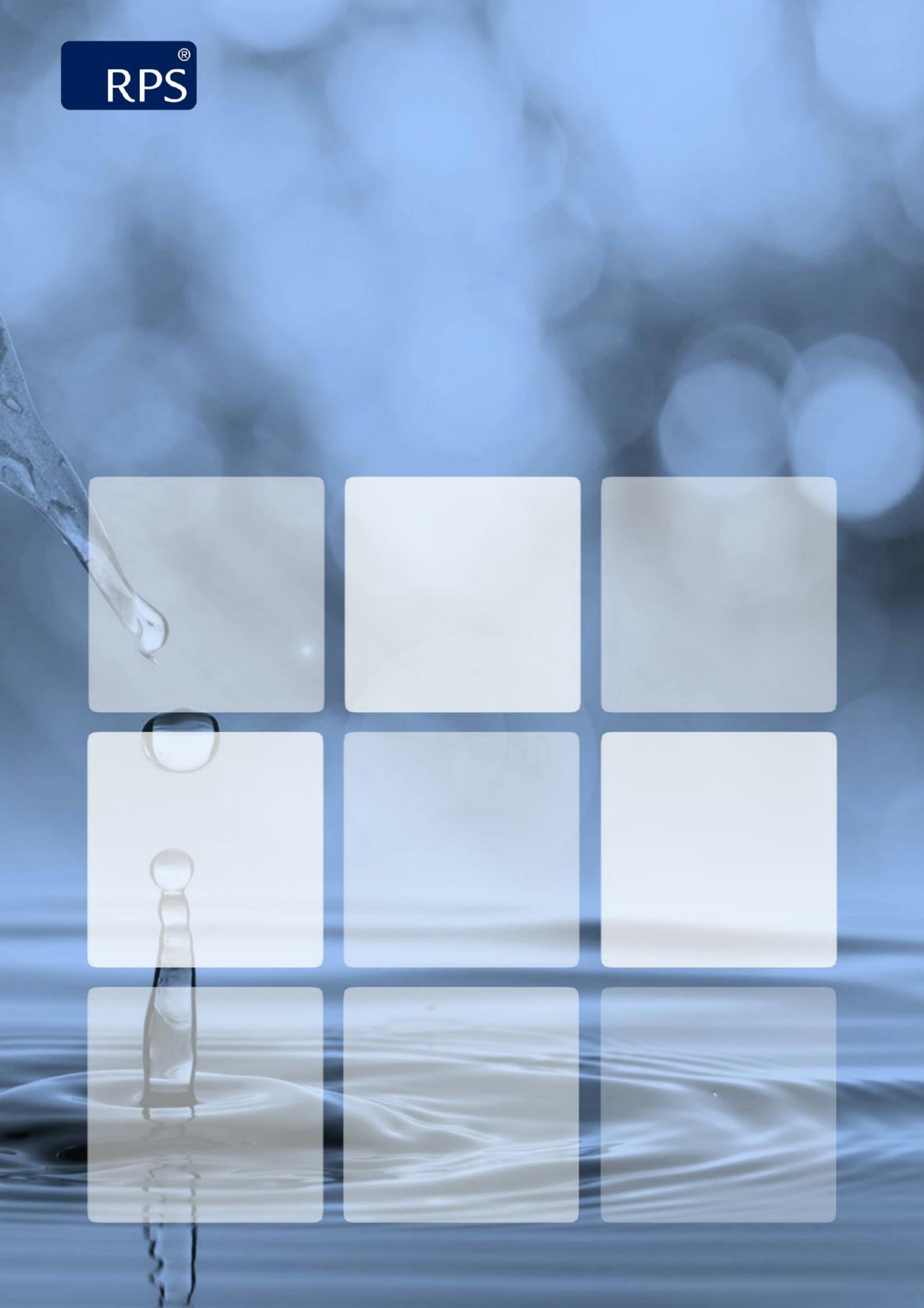


|                               | Flow D3    |            |             |  |  |  |  |  |  |  |
|-------------------------------|------------|------------|-------------|--|--|--|--|--|--|--|
|                               | Min (m3/s) | Max (m3/s) | Volume (m3) |  |  |  |  |  |  |  |
| odel M30 (Base) (W)> M30-1440 | -0.000     | 0.027      | 3031.081    |  |  |  |  |  |  |  |
| Development Phase 1 M30-1440  | -0.000     | 0.027      | 3002.490    |  |  |  |  |  |  |  |
| Development Phase 2 M30-1440  | -0.000     | 0.027      | 2962.845    |  |  |  |  |  |  |  |



# Appendix 3 Formula 'A' Results

#### Baseline


| Overflow ID         | CSO Name                                 | Catchment | Node<br>Number | Total<br>Population | Separate<br>Population | Combined<br>Population | Commercial<br>+ Trade<br>Flows (I/day) | l/s    | Infiltratio<br>n (I/sec) | Dry Weather<br>Flow (I/sec) -<br>165 cons.<br>rate | Combined<br>Formula A<br>(I/sec) - 165<br>cons. rate | Flow<br>at<br>First<br>Spill | Pass<br>Formula<br>A | 3DWF  |
|---------------------|------------------------------------------|-----------|----------------|---------------------|------------------------|------------------------|----------------------------------------|--------|--------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------|----------------------|-------|
| NT26638801_Screen.2 | Killburn WWPS overflow                   | STW001986 | 18             | 589                 | 572                    | 16                     | 4320.00                                | 0.05   | 2.12                     | 3.3                                                | 7                                                    | 27.0                         | PASS                 | 10    |
| NT30662201_CSO.1    | Lasswade, 18 High St CSO                 | STW001986 | -              | 11300               | 5355                   | 5945                   | 436320.00                              | 5.05   | 34.09                    | 60.7                                               | 193                                                  | 190.0                        | FAIL                 | 182   |
| NT30664420.1        | Lasswade, Middlemills Storm<br>Works CSO | STW001986 |                | 11995               | 5540                   | 6455                   | 436320.00                              | 5.05   | 36.06                    | 64.0                                               | 206                                                  | 103.9                        | FAIL                 | 192   |
| NT35718801_flume2.1 | Wallyford PFI Transfer CSO               | STW001986 |                | 56567               | 19956                  | 36611                  | 770688.00                              | 8.92   | 125.27                   | 242.2                                              | 944                                                  | 609.9                        | FAIL                 | 727   |
| NT28768004.1        | Edinburgh PFI CSO                        | STW001986 | -              | 512562              | 86321                  | 426241                 | 20278080.00                            | 234.70 | 1078.41                  | 2292.0                                             | 9936                                                 | 0.0                          | FAIL                 | 6,876 |

**Development Phase 1** 

| Overflow ID         | CSO Name                                 | Catchment | Node<br>Number | Total<br>Population | Separate<br>Population | Combined<br>Population | Commercial<br>+ Trade<br>Flows (I/day) | l/s    | Infiltratio<br>n (I/sec) | Dry Weather<br>Flow (I/sec) -<br>165 cons.<br>rate | Combined<br>Formula A<br>(I/sec) - 165<br>cons. rate | Flow<br>at<br>First<br>Spill | Pass<br>Formula<br>A | 3DWF  |
|---------------------|------------------------------------------|-----------|----------------|---------------------|------------------------|------------------------|----------------------------------------|--------|--------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------|----------------------|-------|
| NT26638801_Screen.2 | Killburn WWPS overflow                   | STW001986 | -              | 1,085               | 1,072                  | 12                     | 4,320                                  | 0.05   | 0.56                     | 2.7                                                | 9                                                    | 27.0                         | PASS                 | 8     |
| NT30662201_CSO.1    | Lasswade, 18 High St CSO                 | STW001986 | -              | 11,796              | 5,855                  | 5,940                  | 436,320                                | 5.05   | 32.53                    | 60.1                                               | 195                                                  | 190.4                        | FAIL                 | 180   |
| NT30664420.1        | Lasswade, Middlemills Storm<br>Works CSO | STW001986 |                | 12,491              | 6,040                  | 6,451                  | 436,320                                | 5.05   | 34.5                     | 63.4                                               | 208                                                  | 105.6                        | FAIL                 | 190   |
| NT35718801_flume2.1 | Wallyford PFI Transfer CSO               | STW001986 | -              | 57,062              | 20,456                 | 36,607                 | 770,688                                | 8.92   | 123.71                   | 241.6                                              | 946                                                  | 608.8                        | FAIL                 | 725   |
| NT28768004.1        | Edinburgh PFI CSO                        | STW001986 | -              | 513,057             | 86,821                 | 426,236                | 20,278,080                             | 234.70 | 1076.85                  | 2291.3                                             | 9938                                                 | 0.0                          | FAIL                 | 6,874 |

Development Phase 2

| Overflow ID         | CSO Name                                 | Catchment | Node<br>Number | Total<br>Population | Separate<br>Population | Combined<br>Population | Commercial<br>+ Trade<br>Flows (I/day) | l/s    | Infiltratio<br>n (I/sec) | Dry Weather<br>Flow (I/sec) -<br>165 cons.<br>rate | Combined<br>Formula A<br>(I/sec) - 165<br>cons. rate | Flow<br>at<br>First<br>Spill | Pass<br>Formula<br>A | 3DWF  |
|---------------------|------------------------------------------|-----------|----------------|---------------------|------------------------|------------------------|----------------------------------------|--------|--------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------|----------------------|-------|
| NT26638801_Screen.2 | Killburn WWPS overflow                   | STW001986 | -              | 1,335               | 1,322                  | 12                     | 0                                      | 0.00   | 0.26                     | 2.8                                                | 10                                                   | 27.0                         | PASS                 | 8     |
| NT30662201_CSO.1    | Lasswade, 18 High St CSO                 | STW001986 | -              | 12,046              | 6,105                  | 5,940                  | 432,000                                | 5.00   | 32.23                    | 60.2                                               | 197                                                  | 190.8                        | FAIL                 | 181   |
| NT30664420.1        | Lasswade, Middlemills Storm<br>Works CSO | STW001986 | -              | 12,741              | 6,290                  | 6,451                  | 432,000                                | 5.00   | 34.2                     | 63.5                                               | 209                                                  | 105.7                        | FAIL                 | 191   |
| NT35718801_flume2.1 | Wallyford PFI Transfer CSO               | STW001986 | -              | 57,312              | 20,706                 | 36,607                 | 766,368                                | 8.87   | 123.41                   | 241.7                                              | 947                                                  | 609.3                        | FAIL                 | 725   |
| NT28768004.1        | Edinburgh PFI CSO                        | STW001986 | *              | 513,307             | 87,071                 | 426,236                | 20,273,760                             | 234.65 | 1076.55                  | 2291.5                                             | 9940                                                 | 0.0                          | FAIL                 | 6,874 |

